Los vectores Q se utilizan en dinámica atmosférica para comprender procesos físicos como el movimiento vertical y la frontogénesis. Los vectores Q no son cantidades físicas que se puedan medir en la atmósfera, sino que se derivan de las ecuaciones cuasi-geostróficas y se pueden usar en las situaciones de diagnóstico anteriores. En los gráficos meteorológicos, los vectores Q apuntan hacia el movimiento hacia arriba y hacia el lado opuesto al movimiento hacia abajo. Los vectores Q son una alternativa a la ecuación omega para diagnosticar el movimiento vertical en las ecuaciones cuasi-geostróficas.

Derivaciones

First derived in 1978,[1]​ Q-vector derivation can be simplified for the midlatitudes, using the midlatitude β-plane quasi-geostrophic prediction equations:[2]

  1. D g u g D t f 0 v a β y v g = 0 {\displaystyle {\frac {D_{g}u_{g}}{Dt}}-f_{0}v_{a}-\beta yv_{g}=0} (x component of quasi-geostrophic momentum equation)
  2. D g v g D t f 0 u a β y u g = 0 {\displaystyle {\frac {D_{g}v_{g}}{Dt}} f_{0}u_{a} \beta yu_{g}=0} (y component of quasi-geostrophic momentum equation)
  3. D g T D t σ p R ω = J c p {\displaystyle {\frac {D_{g}T}{Dt}}-{\frac {\sigma p}{R}}\omega ={\frac {J}{c_{p}}}} (quasi-geostrophic thermodynamic equation)

And the thermal wind equations:

f 0 u g p = R p T y {\displaystyle f_{0}{\frac {\partial u_{g}}{\partial p}}={\frac {R}{p}}{\frac {\partial T}{\partial y}}} (x component of thermal wind equation)

f 0 v g p = R p T x {\displaystyle f_{0}{\frac {\partial v_{g}}{\partial p}}=-{\frac {R}{p}}{\frac {\partial T}{\partial x}}} (y component of thermal wind equation)

where f 0 {\displaystyle f_{0}} is the Coriolis parameter, approximated by the constant 1e−4 s−1; R {\displaystyle R} is the atmospheric ideal gas constant; β {\displaystyle \beta } is the latitudinal change in the Coriolis parameter β = f y {\displaystyle \beta ={\frac {\partial f}{\partial y}}} ; σ {\displaystyle \sigma } is a static stability parameter; c p {\displaystyle c_{p}} is the specific heat at constant pressure; p {\displaystyle p} is pressure; T {\displaystyle T} is temperature; anything with a subscript g {\displaystyle g} indicates geostrophic; anything with a subscript a {\displaystyle a} indicates ageostrophic; J {\displaystyle J} is a diabatic heating rate; and ω {\displaystyle \omega } is the Lagrangian rate change of pressure with time. ω = D p D t {\displaystyle \omega ={\frac {Dp}{Dt}}} . Note that because pressure decreases with height in the atmosphere, a negative value of ω {\displaystyle \omega } is upward vertical motion, analogous to w = D z D t {\displaystyle w={\frac {Dz}{Dt}}} .

From these equations we can get expressions for the Q-vector:

Q i = R σ p [ u g x T x v g x T y ] {\displaystyle Q_{i}=-{\frac {R}{\sigma p}}\left[{\frac {\partial u_{g}}{\partial x}}{\frac {\partial T}{\partial x}} {\frac {\partial v_{g}}{\partial x}}{\frac {\partial T}{\partial y}}\right]}

Q j = R σ p [ u g y T x v g y T y ] {\displaystyle Q_{j}=-{\frac {R}{\sigma p}}\left[{\frac {\partial u_{g}}{\partial y}}{\frac {\partial T}{\partial x}} {\frac {\partial v_{g}}{\partial y}}{\frac {\partial T}{\partial y}}\right]}

And in vector form:

Q i = R σ p V g x T {\displaystyle Q_{i}=-{\frac {R}{\sigma p}}{\frac {\partial {\vec {V_{g}}}}{\partial x}}\cdot {\vec {\nabla }}T}

Q j = R σ p V g y T {\displaystyle Q_{j}=-{\frac {R}{\sigma p}}{\frac {\partial {\vec {V_{g}}}}{\partial y}}\cdot {\vec {\nabla }}T}

Plugging these Q-vector equations into the quasi-geostrophic omega equation gives:

( σ 2 f 2 2 p 2 ) ω = 2 Q f β v g p κ p 2 J {\displaystyle \left(\sigma {\overrightarrow {\nabla ^{2}}} f_{\circ }^{2}{\frac {\partial ^{2}}{\partial p^{2}}}\right)\omega =-2{\vec {\nabla }}\cdot {\vec {Q}} f_{\circ }\beta {\frac {\partial v_{g}}{\partial p}}-{\frac {\kappa }{p}}{\overrightarrow {\nabla ^{2}}}J}

If second derivatives are approximated as a negative sign, as is true for a sinusoidal function, the above in an adiabatic setting may be viewed as a statement about upward motion:

ω 2 Q {\displaystyle -\omega \propto -2{\vec {\nabla }}\cdot {\vec {Q}}}

Expanding the left-hand side of the quasi-geostrophic omega equation in a Fourier Series gives the ω {\displaystyle -\omega } above, implying that a ω {\displaystyle -\omega } relationship with the right-hand side of the quasi-geostrophic omega equation can be assumed.

This expression shows that the divergence of the Q-vector ( Q {\displaystyle {\vec {\nabla }}\cdot {\vec {Q}}} ) is associated with downward motion. Therefore, convergent Q {\displaystyle {\vec {Q}}} forces ascent and divergent Q {\displaystyle {\vec {Q}}} forces descend.[3]​ Q-vectors and all ageostrophic flow exist to preserve thermal wind balance. Therefore, low level Q-vectors tend to point in the direction of low-level ageostrophic winds.[4]

Aplicaciones

Los vectores Q se pueden determinar completamente con: altura geopotencial ({\ estilo de visualización \ Phi}\Fi) y la temperatura en una superficie de presión constante. Los vectores Q siempre apuntan en la dirección del aire ascendente. Para un ciclón y anticiclón idealizados en el hemisferio norte (donde T y < 0 {\displaystyle {\frac {\partial T}{\partial y}}<0} ), los ciclones tienen vectores Q que apuntan paralelos al viento térmico y los anticiclones tienen vectores Q que apuntan antiparalelos al viento térmico.[5]​ Esto significa movimiento hacia arriba en el área de advección de aire cálido y movimiento hacia abajo en el área de advección de aire frío.

En la frontogénesis, los gradientes de temperatura deben ajustarse para la iniciación. Para esas situaciones, los vectores Q apuntan hacia el aire ascendente y los gradientes térmicos cada vez más estrechos.[6]​ En áreas de vectores Q convergentes, se crea vorticidad ciclónica, y en áreas divergentes, se crea vorticidad anticiclónica.[1]

Referencias


Qvector at Collection of Qvector free for personal use

Q Vector Art, Icons, and Graphics for Free Download

GitHub Persioqq/qvector A 2d and 3d vector libray.

Free Vector Graphics

Q Vector SVG Icon SVG Repo